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Abstract. We study the accuracy of the adiabatic approximation (AA) for coupled oscillators 
(CO). This accuracy is mainly determined by the strength of coupling between oscillators 
and, to a lesser degree, by the frequency ratio p of the CO. The AA works very well for 
coupling which is not too strong even though the frequencies of the CO are comparable. 
However, for strong coupling the AA can fail, even if p = 0, giving completely inadequate 
energy spectrum and wavefunctions of the CO. 

1. Introduction 

To treat systems with many interacting degrees of freedom the approximate methods 
of separation of the variables are most often used. A method of this kind is the 
adiabatic separation method. The idea of this approach is as follows: in the first step 
the dynamical problem for one part of the system is solved with the variables of the 
other part of the system ‘frozen’. Then, in the second step these variables are ‘unfrozen’ 
and the effective equation is solved for the ‘unfrozen’ part of the system. 

The adiabatic approach was proposed at the beginning of the development of 
quantum mechanics by Slater (1927) who formulated a mathematical scheme for this 
approach and  proposed it to separate electronic variables for two-electron atoms and 
to separate electronic and nuclear variables for molecules. Born and Oppenheimer 
(1927) have accepted this approach as the basis of quantum theory for molecules. The 
adiabatic separation of electronic and nuclear motions called the Born-Oppenheimer 
(BO) method was later slightly modified on the grounds of a variational method by 
Born (1951), and Born and  Huang (1954). ( In  this work we use the abbreviations: 
(A)  = adiabatic Born-Huang method and (AA) = adiabatic approximation = BO or  A 

method.) 
Only recently has the AA scheme been applied to separate low-frequency from 

high-frequency vibrations in molecules (Brickmann 1973, Russeger and Brickmann 
1975, 1977, Holmgren et a1 1977, Huston and Howard 1980, Makarewicz 1984). By 
analogy with the adiabatic electron-nuclear separation it is usually assumed that the 
accuracy of adiabatic separation of vibrations of one kind from another is high when 
the frequency ratio p of the separated vibrations is small (see e.g., Christoffel and  
Bowman 1981). 

However, the calculations performed for the CO model by Caswell and Danos 
(1970) proved that the accuracy of such separation is very high within a wide range 
of p provided that the oscillator coupling constant is sufficiently small (in their model 
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this constant tended to zero when p + 0). Further analysis of the AA for CO (Makarewicz 
1979, Zhi-Ding et a1 1982) proved that its accuracy strongly depends on the coupling 
of the CO. 

For high coupling an  improvement in the adiabatic results can be obtained by 
expanding the wavefunction of a system considered in a basis of adiabatic functions. 
However, this is possible only if this basis is complete. Recently, Woolley and Sutcliffe 
(1977) questioned the dogma of completeness of the adiabatic basis but so far the 
counter-example has not been found. 

In this paper we consider the CO model and  analyse the dependence of the accuracy 
of adiabatic eigenenergies on the model parameters. We show that this accuracy does 
not extend to zero when p + 0 at any fixed coupling constant. We also study the 
adiabatic potentials and  prove that for strong coupling they significantly depart from 
exact non-adiabatic potentials. This work also proves that in some cases the A method 
does not allow as to describe correctly the energy spectrum of CO because adiabatic 
functions cannot reflect adequately the properties of the exact wavefunctions. 

2. Slow and fast motions, and accuracy of the adiabatic approximation 

Let us consider the CO model described by the Hamiltonian 
i 

H ( x , ,  x*) = -;(a*/ax:+a2/ax:) + c un,,nzX:'i'X:nz. ( 1 )  
n , ,  n 2 = 0  

This Hamiltonian defines the Caswell-Danos model for the special case 
n,, n,> 1. Another model can be obtained if the parameters 
relations 

= 0 for 
fulfil the following 

a1.0 = (4 - Y I 7 7  ) / 2  

ao.1 = id- Y 2 7 7 ) / 2  0 2 . 1  = a1,2 = v2/2  (2) 

a1,I = v ( w ,  +w2) 

u2,0 = u , , ~  = a2,2 = 0 

where w ,  and 7 are arbitrary positive parameters. For this model, eigenfunctions and 
eigenenergies for some states are known (Makarewicz 1983), for example 

$p , p 2  = exp[-(w,xf+ w,xS+ qx:xf)/2]xTlxp (3) 

E p , . p 2  = i Y 2 w l  + y,w2)/2; Y, = 2P, + 1 ; p z  =o,  I .  (4) 
The proposed model for v < <  1 is close to the Caswell-Danos model (as v2<< 7 )  and 
is more convenient to analyse. 

We now caculate the adiabatic eigenenergies for this model. In the BO approxima- 
tion the wavefunction is represented as the product 

( 5 )  4Bo(x1, x2) = 4 Y 0 ( X I ,  :2)42B0(x2) 

[ H , ( x , ,  221 - aB0(1,)14~0(x,. 1 2 )  = 0 

where 4yo obeys the equation 

(6) 
with the operator HI = H - r2 (2T2=  -a2/ax:) obtained from the Hamiltonian ( I )  by 
fixing the x2 variable. In  equation (6) T2 is the coordinate of the oscillator of a lower 
frequency and is treated as a parameter, which is marked by a tilde. 
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The function 4,”” is determined from the equation 

[T2+  E B O ( X J ) - E B O ] + ; O ( X z )  - 0 .  (7) 

The BO method can be corrected by including in equation (7) the diagonal auiabatic 
correction 

which takes into account some part of the dynamical correlation between ( x , )  and 
( x z )  subsystems. Equation (7) with the potential sB0+ABo defines the A method. 

In our case the operator HI represents the anharmonic oscillator 

(9) HI = ; [ - a ’ / x : + w 2 ( x 2 ) x : ] +  v ( x z ) x f + a , , , x z  2 

for which the eigenenergies can be calculated by applying perturbation theory 
N 

~ ~ ~ = a , , , x : + w ( x , )  u k ( x 2 ) E k  
k = O  

where 

w ( x * )  = [G: + ax:+ (Tx:)2]1’2; 

4 x 2 )  = (77Xd2/2,  u ( x 2 ) =  u ( x 2 ) / w 3 ( x 2 ) ;  a = 2a,,, 

4, = (2al.o)l ’2,  6 2  = (2a0,1)”z,  

and Ek are the standard perturbation coefficients (Caswell 1979). 
The adiabatic correction is given by 

AB0(x2)  E C [ M C  + Q u ( x ~ ) ( ~ / x ~  - 1 1  C ) ]  (11) 

where 

C = adln w/dx2 = x 2 [ a  + 2 (  T X ~ ) ~ ] / ( ~ W ~ ) ,  

M = n : +  n l +  1, Q = 2 n :  + 3 n :  + 7n,  -+ 3 

Having defined and  potentials we solve equation (7) numerically by the 
Numerov-Cooley method (Cooley 1961). The energies EBo and E A  obtained for 
various values of the parameter p = G 2 / G l  and a are compared with the exact energies 
E (see equation (4)) in figure 1 where the dependences of AEM = IE’- E I / E  (where 
M = BO, A)  on these parameters are shown for the ground state. 

Let us consider the following facts. 
(i) For a =constant, AEM does not tend to zero as p + 0 but, on the contrary, 

increases. 
(ii) AEA changes very slowly with changing p and is almost constant for a wide 

range of p values. 
(iii) For p<< 1, AEBo is significantly higher than AEA and quickly increases as 

p + 0, more quickly the higher is a. The property (i) is a direct contradiction to the 
usually accepted view that AA is best for p + 0. The criterion of a small p is not 
sufficient. This is not surprising: indeed, when a =constant and p + 0 the relative 
value of the coupling with respect to the energy of the slow oscillator increases and 
this is the reason why AEM does not tend to zero. Thus, as can be seen in what follows, 
the existence of the high- and low-frequency oscillators in the system of CO is not 
sufficient for a good AA. More important are the couplings between them. 

The property (ii) is important from a practical point of view as it allows us to apply 
this method for a very wide range of the parameter p. 
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The property (iii) points to the fact that dynamical correlation of motions in the 
system taken into account significantly corrects EB0 in the range of low p values. 

3. Adiabatic and non-adiabatic potentials 

Adiabatic potentials and e A  d o  not describe exactly the dynamics of the subsystem 
with xi  coordinate (slow oscillator in our case). In  order to show that adiabatic 
approximation can be essentially unsatisfactory let us consider e A  in detail. The 
can be determined as (see equation (6)) 

E A  = (4;OH4B0),, (12) 

if the function 4yo obeys the normalisation condition 

(4Bo14B",x, = 1 for arbitrary x2.  

By analogy with 
of the whole system exactly can be determined as 

the non-adiabatic potential g N A  taking into account the dynamics 

ENA=(41H4Jx, (13) 

where the function 4, is determined by the relation 

+ ( X I ,  x2) = 4 l ( X l ,  x2)4z(x2)  (14) 

where (c, is the exact normalised wavefunction and 

4 L x J  = (15)  

Thus, knowing (c,, the function 4 2 ( x z )  can be calculated and then 4)  and can be 
determined. 

The definitions (13)-(15) have been proposed by Hunter (1974, 1975, 1981). He  
showed that 142(xz)12 has no nodes and, in consequence, has spiky barriers in the 
vicinity of the nodes in the 4 t ( x 2 )  function. 

for our model. Knowing the exact 
(c, (see equation (3))  42 and eNA can be easily calculated. For the ground state they 
have the form 

It is interesting to compare E* and with 

4:"3"(x2) = N , F , / ~  exp(-w2x:/2), 

&;pol = i[( w2x2) i  + F (  (w2 + 5 F / 4 ) x :  - &) + w ,] 

and for the first excited state 

&O'"(X,) = N,X24:0.0'(X2), (18) 

E::= E:$-  F / 2  (19) 
where F = ( x : + w , / ~ ) - ] .  

Let us note that the form of is the same for a given value of the quantum 
number n ,  and for various values of n,. The non-adiabatic potential .sNA, contrary to 

and E ~ O ,  changes with n 2 ,  e.g. E ~ , ~  and E:: have different functional forms. ( In  
equations (16)-(17) and (18)-(19) the values of 7 are different because they are 
determined from equations ( 2 )  for a given a,,o and a,, , ,  and for different pi, but this 
difference is unimportant.) 

and 

NA 
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Figure 1.  The AEBo (broken curves) and AEA (full 
curves) as functions of the frequency ratio p for 
various values of the coupling constant a indicated 
above the lines for the ground state of CO with &, = 1. 

1 . 2 ,  

V 

0 
x 2  

Figure 2. The Born-Oppenheimer, adiabatic and 
exact non-adiabatic potentials ( V =  cBo, c A  and 
cNA) for C O  with a = 0.2, p = 0 and G, = 0.1 and 0.2 
(the values in the figure). The line 0.2 ( B O )  lies close 
to the line 0.1 (NA) ,  so it is not shown. 

The potentials .sA, .sB0 and for the ground state are shown in figure 2 for the 
most interesting case p = 0. These potentials differ from one another significantly for 
small values of w I  because then the coupling between the oscillators is relatively strong. 
Let us note that for sufficiently small values of G I ,  have two barriers (in figure 2 
.sA(x2)  is illustrated only for x 2 2 0  as E ~ ( x ~ )  is the even function of x2). These barriers 
are due to the property of the ABo correction which has two maxima at x, and -x, 
where 

x ,  = k-lI2 and A B 0 ( x , )  = M k / 6 4 ;  k = a / ( 2 ~ ~ , ~ ) .  

We see that if k increases, both barriers approach each other and their heights increase. 
Such barriers d o  not occur in the .sNA potential. Thus, for high values of k the A 

method evidently fails. In the A method the dynamical correlation of motions is 
overestimated because the correction ABo is too high. On the other hand, in the BO 

method this correlation is neglected and as a consequence the potential is lower 
than .sNA. 

also has no barriers, which at a glance contradicts 
Hunter’s statement (Hunter 1981) that the exact potential must have spiky barriers 
in the vicinity of the nodes in the adiabatic function 4;. He derived his theorem 
considering 1C$212 which has no nodes because, as he stated, ‘for If(y)12 (=1C$2(x2)12) to 
have a node I+(x, y)12( = / + ( x i ,  x2)i2 in our notation) must be zero at all points in the 
x subspace for the point in the y subspace where the node occurs. Excepting the case 
where the total wavefunction + ( x ,  y )  is expressible as a single product (i.e., x and y 
are separable in the Hamiltonian H ( x ,  y ) )  it is very unlikely that I+(x, y)12 could have 
such a node’. 

In the first excited state (0, 1) 
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For our model exactly this ‘unlikely’ case is realised. For the state (0, 1 )  there is 
the nodal line x 2 = 0  on which +(x, ,  x2) = O  for arbitrary x I .  As a consequence I & 2 / 2  
has the node at x2 = 0. 

We see that Hunter’s theorem (Hunter 1981) is valid for the less general case, 
namely when x, represents all variables of a particle or group of particles. Then x2 
for which + = 0 in the whole space of x ,  does not exist because it would indicate that 
for this x2 the particles described by x, do not exist. This would lack physical sense. 

4. Failure of the adiabatic separation method for strong coupled oscillators 

As mentioned previously, for strong coupling, adiabatic potentials and E Bo differ 
significantly from the exact potential eNA.  Here we will analyse the adiabtic wave- 
functions. 

We now consider the model of strong coupled quadratic and quartic oscillators 
defined by the Hamiltonian ( 1 )  with an , ,n2=0  except a,,,=+. Let us calculate the 
potential eBo and adiabatic correction ABo from equations (6) and (8): 

EB0  = ( n ,  +;)xi, ABo = M/(2x2)’. (20,211 

Solving equation ( 7 )  with the potential (20) we obtain 

E’O= (n2+f)w,; w , = ( 2 n 1 + ~ ) ” * .  

Equation ( 7 )  with the potential 
form 

where 

after introducing the variable x = x2wk/’, takes the 

( 2 2 )  [+( -d2/dx2 + x2) + Ax-* - eA]4$(x) = 0 

eAwA = E A ,  A = M/4. 

This equation has been analysed by Zirilli (1974) and Lathouwers (1975) who have 
found its solutions for x 3 0: 

& A ( ~ )  = bjp’(x) = xa+”’ exp(-x2/2)~)P’(x’);  X S O  (23) 
where Lip’ is the generalised Laguerre polynomial and a = i ( l  +8A)1’2/2; a > -1 .  
The authors suggested, however, different solutions for x < 0. Zirilli (1974) considered 
only a > 0 and for x < 0 he adopted: 

+4ip’(lxl) for even states 
’;’(’)= - ~ ? ) ( I x / )  for odd states 

x < o  

which gives doubly-degenerate states with the energies 

e:  = 2 n  + a  + 1. 

However, as Lathouwers (1975) noticed, this degeneracy is not removed when A -+ 0 
(1.1 +4).  He recognised that such a solution of the problem is unsatisfactory because 
for A = 0 we should have eigenenergies of the harmonic oscillator i.e. 

e: = 2n +{ and e; = 2 n  +:. 
He then rejected such constructed even solutions but he permitted square-integrable 
singular even solutions 

&:(x) = 4:- “”(lxl) for x < 0 (26) 
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which correspond to the eigenvalues 

e : = 2 n - / a / + I .  (27) 

However, such solutions exist only for a < 1 ( A  <$). 
Now, let us consider the solutions of equation (22) for our problem. If we take the 

solutions (26)-(27) then for n, 5 1 we will not obtain the even square-integrable 
solutions. We see that the adiabatic basis is not complete, as is also shown by the 
results contained in table 1 .  Comparing adiabatic energies E A  with the 'exact' ones 
(calculated by the variational method described in the appendix) we see that the A 

method gives an  energy spectrum which is completely wrong because energies of the 
even states for n, 2 1 are absent from this spectrum. Note that the ground state energy 
E ,  lies below the bottom of the potential (EO < E ~ ( x , , , ~ , )  = (2A)"*) which means that 
( T2) < 0. This non-physical result is due to the singularity of the adiabatic wavefunction 
at x=O.  

Table 1. The Born-Oppenheimer (EBo),  adiabatic ( E A )  and 'exact' ( E )  energies of CO 

with potential V =ix:x:. The minus sign denotes energies corresponding to the adiabatic 
singular wavefunctions for a < 0. 

n , ,  n2 G , O  0, 1 1,o 1 , 1  0,2  L O  

EBO 0.500 1.500 0.866 2.598 2.500 1.118 
E A  0.134- 1.866 - - 2.134- - 
E 0.588 1.578 1.068 2.810 2.612 1.353 

If we take the solutions by Zirilli (24)-(25) then we will not obtain the new energy 
levels due to degeneracy e: = e , .  Thus the structure of the energy spectrum is also 
incorrectly reflected. 

We see that the A method for the CO model considered completely fails. In order 
to understand better this important fact let us consider the properties of the 4Fo 
function which determine the features of the ABo correction. For a fixed value of x ,  
(let us take x l  = 1)  4Fo(xI,  x2) becomes, for n ,  = 0: 

4yo(x , ,  x2) = lx2)1'2 exp(-x:j2) = J X ~ / ' / ~  for x2<< I .  

The ABo term is determined by the term 4yo a2/ax:4Po-  /x21-' which has a singularity 
at x 2 = 0  which decides the properties of ABo. Such a typical behaviour of ABo is a 
consequence of the fact that the potential V ( x , ,  x2) becomes zero on the line x ,  = 0. 
Due to the slow viariation of V(x,,  x2) near the line x ,  = 0 the function 4Fo is very 
diffuse, so it feels the shape of V(x,,  x2) in the large domain of x , .  However, for x1 >> 1 
the potential is a fast varying function of x2 which causes fast variation of 4yo for 
x 2 - 0 .  It is now clear that ABo will have large values near x 2 = 0 .  

5. Conclusions 

We have studied the AA for CO. We found that for coupling between oscillators which 
is not too strong the accuracy of adiabatic energies weakly depend on the frequency 
ratio p. The BO and A methods work very well for a wide range of the parameters p 
and and a hierarchy of slow and fast motions in the CO system is not required. 
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We have analysed the adiabatic potentials and we conclude that for strong coupling 
they significantly differ from the non-adiabatic potentials which means that they 
describe the dynamics of the system inadequately. Even for p = 0 the A method may 
turn out to be a failure giving an energy spectrum not corresponding to the real one. 

The study of the CO model led to an important and rather general conclusion. If 
the potential of the system is a slowly varying function in some region along dynamical 
variables x,, then adiabatic wavefunctions will evidently differ from the exact wavefunc- 
tions (in our example in P 4 all adiabatic wavefunctions dA(xI,  x2) have the nodal line 
x2 = 0 which does not hold for the exact wavefunctions of even parity with respect to 
the reflection x2+ -x2), then they will not be able to serve as the basis for expansion 
of the exact wavefunctions. 
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Appendix 

Calculation of eigenenergies for CO with potential V = $x:x: is not a trivial problem 
due to strong coupling and anharmonicity. In the first step we look for the wavefunc- 
tions of CO in the form 

47,&I, x2) = 4!3XI)d!3X2). (Al l  

We can obtain the best one-coordinate functions 4: from the Hartree equations 

(-d2/d x:+(x;)x: -2e?l)4y,(xl) = 0, 

(-d2/d x:+(x$xi-2e?J4y2(x2) = O .  

The eigenvalues of these equations are well known: 

eYl = w(n,+i) ,  w = (Xi)1’2, 

= V ‘ / ’ N ~ ,  U = (x3/2,  

where N2 are the eigenenergies of the one-dimensional quartic oscillator calculated 
by Bell er ul (1970). 

From the Hellmann-Feynman theorem (Hellmann 1937, Feynman 1939) we obtain 

(x:) = d In erl/dw, (xi)  = defJdu. (A6,7) 
Solving equations (A4)-(A7) we find 

U = [( n, +$)(3/ N2)”2]3’2, 

w = ( n ,  +9/2u. 

The eigenenergies of CO in the Hartree approximation are given by 

EFl.n2 = e:, + e?2 -(x:)(xi) = e?, + e?>- uw2. (A10) 
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However, the values of Er,,"? are not sufficiently accurate. The improvement of these 
energies can be obtained by diagonalisation of the Hamiltonian matrix in the basis of 
the Hartree wavefunctions ( A l ) .  This matrix can be factorised due to symmetry on 
four blocks. Diagonalisation of each block of dimension lo2 gives energies of CO with 
accuracy of order which is sufficient for our purpose. 
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